Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 7(24): 2002997, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344141

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease that can lead to irreversible liver cirrhosis and cancer. Early diagnosis of NASH is vital to detect disease before it becomes life-threatening, yet noninvasively differentiating NASH from simple steatosis is challenging. Herein, bifunctional probes have been developed that target the hepatocyte-specific asialoglycoprotein receptor (ASGPR), the expression of which decreases during NASH progression. The results show that the probes allow longitudinal, noninvasive monitoring of ASGPR levels by positron emission tomography in the newly developed rat model of NASH. The probes open new possibilities for research into early diagnosis of NASH and development of drugs to slow or reverse its progression.

2.
J Pharm Sci ; 108(4): 1404-1414, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30528197

RESUMEN

Physicochemical properties of peptides need to be compatible with the manufacturing process and formulation requirements to ensure developability toward the commercial drug product. This aspect is often disregarded and only evaluated late in discovery, imposing a high risk for delays in development, increased costs, and finally for the project in general. Here, we report a case study of early physicochemical peptide characterization and optimization of dual glucagon-like peptide 1/glucagon receptor agonists toward specific formulation requirements. Aggregation issues which were observed at acidic pH in the presence of phenolic preservatives could be eliminated by modification of the peptide sequence, and chemical stability issues were significantly improved by addition of stabilizing formulation excipients. We describe structural, analytical, and biophysical characterization in different compositions to analyze the effect of pH and formulation excipients on physical and chemical stability. Molecular models have been generated to rationalize peptide stability behavior based on computed physicochemical descriptors and interactions with excipients. To conclude these studies, a general roadmap is proposed how to assess and optimize early physicochemical peptide properties in a sophisticated way by combining experimental and in silico profiling to provide stable peptide drugs under relevant formulation conditions at the end of discovery.


Asunto(s)
Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Péptidos/química , Simulación por Computador , Estabilidad de Medicamentos , Excipientes/química , Péptido 1 Similar al Glucagón/agonistas , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Péptidos/farmacología , Conservadores Farmacéuticos/química , Receptores de Glucagón/agonistas
3.
J Pharm Sci ; 107(10): 2531-2537, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29883667

RESUMEN

Preservatives are excipients essentially needed in pharmaceutical multidose formulations to prevent microbial growth. Among available substances, phenol is widely used for parenterals; however, it is known to interact with nonionic surfactants like polysorbate and potentially with the active pharmaceutical ingredient. Although the need for combinations of surfactants and preservatives is growing, to date possible molecular interactions which can eventually weaken the stability and antimicrobial activity of the formulation are not yet well understood and properly investigated. In the current study, the binding of phenol to a model fusion protein as well as to polysorbate 20 was investigated. For this purpose, the fraction of bound phenol was successfully quantified via diffusion ordered nuclear magnetic resonance spectroscopy. The binding of phenol to the surfactant is negligible in pharmaceutically relevant polysorbate concentrations, but the binding to the employed active pharmaceutical ingredient was relevant and concentration dependent. The resulting consequence of this interaction was the decrease of the antimicrobial efficacy. As a final outcome of this study, nuclear magnetic resonance analysis is proposed as a material saving method to be used in combination with the antimicrobial activity testing described in the Pharmacopeias.


Asunto(s)
Antiinfecciosos/química , Excipientes/química , Polisorbatos/química , Proteínas/química , Química Farmacéutica/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Conservadores Farmacéuticos/química , Tensoactivos/química
4.
Angew Chem Int Ed Engl ; 54(22): 6511-5, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25877959

RESUMEN

Structure-based drug design (SBDD) is a powerful and widely used approach to optimize affinity of drug candidates. With the recently introduced INPHARMA method, the binding mode of small molecules to their protein target can be characterized even if no spectroscopic information about the protein is known. Here, we show that the combination of the spin-diffusion-based NMR methods INPHARMA, trNOE, and STD results in an accurate scoring function for docking modes and therefore determination of protein-ligand complex structures. Applications are shown on the model system protein kinase A and the drug targets glycogen phosphorylase and soluble epoxide hydrolase (sEH). Multiplexing of several ligands improves the reliability of the scoring function further. The new score allows in the case of sEH detecting two binding modes of the ligand in its binding site, which was corroborated by X-ray analysis.


Asunto(s)
Diseño de Fármacos , Ligandos , Proteínas/química , Sitios de Unión , Cristalografía por Rayos X , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Difusión , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Glucógeno Fosforilasa/antagonistas & inhibidores , Glucógeno Fosforilasa/metabolismo , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas/metabolismo
5.
Proteins ; 81(11): 2007-22, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23852655

RESUMEN

Eukaryotic proteins with important biological function can be partially unstructured, conformational flexible, or heterogenic. Crystallization trials often fail for such proteins. In NMR spectroscopy, parts of the polypeptide chain undergoing dynamics in unfavorable time regimes cannot be observed. De novo NMR structure determination is seriously hampered when missing signals lead to an incomplete chemical shift assignment resulting in an information content of the NOE data insufficient to determine the structure ab initio. We developed a new protein structure determination strategy for such cases based on a novel NOE assignment strategy utilizing a number of model structures but no explicit reference structure as it is used for bootstrapping like algorithms. The software distinguishes in detail between consistent and mutually exclusive pairs of possible NOE assignments on the basis of different precision levels of measured chemical shifts searching for a set of maximum number of consistent NOE assignments in agreement with 3D space. Validation of the method using the structure of the low molecular-weight-protein tyrosine phosphatase A (MptpA) showed robust results utilizing protein structures with 30-45% sequence identity and 70% of the chemical shift assignments. About 60% of the resonance assignments are sufficient to identify those structural models with highest conformational similarity to the real structure. The software was benchmarked by de novo solution structures of fibroblast growth factor 21 (FGF21) and the extracellular fibroblast growth factor receptor domain FGFR4 D2, which both failed in crystallization trials and in classical NMR structure determination.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Programas Informáticos , Algoritmos , Receptores de Factores de Crecimiento de Fibroblastos/química
6.
Biomol NMR Assign ; 7(2): 179-82, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22752790

RESUMEN

Fibroblast growth factor receptor (FGFR) 4 has been associated with progression of melanoma, breast, head and neck and hepatocellular carcinoma and is therefore an interesting target for therapeutic intervention (Ho et al. in J Hepatol 50:118-127, 2009). The extracellular D2 domain of the FGFR4 receptor contains a heparin binding site and the main interaction site with the fibroblast growth factor. We report the sequential backbone and side chain resonance assignment of the D2 domain of human FGFR4.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Protones , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/química , Secuencia de Aminoácidos , Isótopos de Carbono , Humanos , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Estructura Terciaria de Proteína
7.
J Biol Chem ; 285(34): 26628-40, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20547770

RESUMEN

Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF.FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM(6)), octasaccharide (HM(8)), and decasaccharide (HM(10)), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM(8) and HM(10) are significantly more potent than HM(6) in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1.FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2.FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1.FGFR4 interaction site and a direct FGFR4.FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF.FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM(8) relative to HM(6) in stimulating FGF2.FGFR4 signaling correlates with the higher affinity of HM(8) to bind and dimerize FGF2. Notably FGF2.HM(8) exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF.FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Heparina/análogos & derivados , Oligosacáridos/farmacología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Sitios de Unión , Línea Celular , Humanos , Ratones , Complejos Multiproteicos/biosíntesis , Oligosacáridos/química , Unión Proteica , Multimerización de Proteína , Relación Estructura-Actividad
11.
Chembiochem ; 6(10): 1891-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16013076

RESUMEN

Here we present an NMR-based approach to solving protein-ligand structures. The procedure is guided by biophysical, biochemical, or knowledge-based data. The structures are mainly derived from ligand-induced chemical-shift perturbations (CSP) induced in the resonances of the protein and ligand-detected saturated transfer difference signals between ligands and selectively labeled proteins (SOS-NMR). Accuracy, as judged by comparison with X-ray results, depends on the nature and completeness of the experimental data. An experimental protocol is proposed that starts with calculations that make use of readily available chemical-shift perturbations as experimental constraints. If necessary, more sophisticated experimental results have to be added to improve the accuracy of the protein-ligand complex structure. The criteria for evaluation and selection of meaningful complex structures are discussed. These are exemplified for three complexes, and we show that the approach bridges the gap between theoretical docking approaches and complex NMR schemes for determining protein-ligand complexes; especially for relatively weak binders that do not lead to intermolecular NOEs.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diseño de Fármacos , Ligandos , Modelos Moleculares , Unión Proteica , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas/metabolismo , Relación Estructura-Actividad , Proteínas Quinasas p38 Activadas por Mitógenos/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
FEBS Lett ; 579(19): 4049-54, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16026785

RESUMEN

The catalytic subunit of cAMP-dependent protein kinase (PKA) can easily be expressed in Escherichia coli and is catalytically active. Four phosphorylation sites are known in PKA (S10, S139, T197 and S338), and the isolated recombinant protein is a mixture of different phosphorylated forms. Obtaining uniformly phosphorylated protein requires separation of the protein preparation leading to significant loss in protein yield. It is found that the mutant S10A/S139D/S338D has similar properties as the wild-type protein, whereas additional replacement of T197 with either E or D reduces protein expression yield as well as folding propensity of the protein. Due to its high sequence homology to Akt/PKB, which cannot easily be expressed in E. coli, PKA has been used as a surrogate kinase for drug design. Several mutations within the ATP binding site have been described to make PKA even more similar to Akt/PKB. Two proteins with Akt/PKB-like mutations in the ATP binding site were made (PKAB6 and PKAB8), and in addition S10, S139 and S338 phosphorylation sites have been removed. These proteins can be expressed in high yields but have reduced activity compared to the wild-type. Proper folding of all proteins was analyzed by 2D 1H, 15N-TROSY NMR experiments.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mutación , Pliegue de Proteína , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Escherichia coli/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Bioorg Med Chem Lett ; 15(7): 1779-83, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15780605

RESUMEN

A novel strategy is applied to obtain quantitative insights on factors influencing biological affinity in protein-ligand complexes. This approach is based on the detection of ligand binding by (15)N and (1)H amide chemical shift differences in two-dimensional (15)N-heteronuclear single-quantum correlation spectra. Essential structural features linked to affinity can be extracted using statistical analysis of (15)N and (1)H amide chemical shift differences in congeneric series relative to uncomplexed protein spectra, as demonstrated for 20 MMP-3 inhibitors in complex with human matrix metalloproteinase stromelysin (MMP-3). The statistical analysis using PLS led to a significant model, while its chemical interpretation, highlighting the importance of particular residues for affinity, are in agreement to an X-ray structure of one key compound in the homologue MMP-8 binding site.


Asunto(s)
Amidas/química , Metaloproteinasa 3 de la Matriz/química , Inhibidores de Proteasas/química , Relación Estructura-Actividad Cuantitativa , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Metaloproteinasa 8 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz
14.
Chembiochem ; 5(11): 1508-16, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15481030

RESUMEN

Protein phosphorylation is one of the most important mechanisms used for intracellular regulation in eukaryotic cells. Currently, one of the best-characterized protein kinases is the catalytic subunit of cAMP-dependent protein kinase or protein kinase A (PKA). PKA has the typical bilobular structure of kinases, with the active site consisting of a cleft between the two structural lobes. For full kinase activity, the catalytic subunit has to be phosphorylated. The catalytic subunit of PKA has two main phosphorylation sites: Thr197 and Ser338. Binding of ATP or inhibitors to the ATP site induces large structural changes. Here we describe the partial backbone assignment of the PKA catalytic domain by NMR spectroscopy, which represents the first NMR assignment of any protein kinase catalytic domain. Backbone resonance assignment for the 42 kDa protein was accomplished by an approach employing 1) triply ((2)H,(13)C,(15)N) labeled protein and classical NMR assignment experiments, 2) back-calculation of chemical shifts from known X-ray structures, 3) use of paramagnetic adenosine derivatives as spin-labels, and 4) selective amino acid labeling. Interpretation of chemical-shift perturbations allowed mapping of the interaction surface with the protein kinase inhibitor H7. Furthermore, structural conformational changes were observed by comparison of backbone amide shifts obtained by 2D (1)H,(15)N TROSY of an inactive Thr197Ala mutant with the wild-type enzyme.


Asunto(s)
Dominio Catalítico , Proteínas Quinasas Dependientes de AMP Cíclico/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas Quinasas/química , Secuencia de Aminoácidos , Catálisis , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Relación Estructura-Actividad
16.
J Med Chem ; 46(17): 3563-4, 2003 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-12904059

RESUMEN

Using NMR spectroscopy we show that the cellular prion protein constitutes a target for binding of various acridine and phenothiazine derivatives. We unambiguously map the quinacrine binding site of recombinant human prion protein to residues Tyr225, Tyr226, and Gln227 of helix alpha3, which is located near the "protein X" epitope. The millimolar dissociation constant of the complex suggests that in vivo inhibition of prion propagation occurs after 10000-fold concentration of quinacrine within endolysosomes.


Asunto(s)
Antimaláricos/química , Priones/química , Quinacrina/química , Sitios de Unión , Cloroquina/química , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Fragmentos de Péptidos/química , Fenotiazinas/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA